• Login
    View Item 
    •   AUW IR
    • Faculty Research
    • Science & Math
    • Current Faculties
    • Ayan Roy
    • Articles
    • 2021
    • View Item
    •   AUW IR
    • Faculty Research
    • Science & Math
    • Current Faculties
    • Ayan Roy
    • Articles
    • 2021
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evolutionary perspectives and adaptation dynamics of human seasonal influenza viruses from 2009 to 2019:an insight from codon usage

    Thumbnail
    View/Open
    2021 (7).pdf (10.68Mb)
    Date
    2021
    Author
    Roy, Ayan
    Metadata
    Show full item record
    Abstract
    The annually recurrent seasonal influenza viruses, namely, influenza A viruses (H1N1/pdm2009 and H3N2) and influenza B viruses, contribute substantially to human disease burden. Elucidation of host adaptation, population dynamics and evolutionary patterns of these viruses contribute to better control of current epidemic situation and bolster efforts towards pandemic preparedness. Present study has been addressed at unraveling the signatures of codon usage and dinucleotide distribution of these seasonal influenza viruses associating with their fitness and ongoing adaptive evolution in human population. Thorough analysis of codon usage adaptation revealed that H3N2 has been exhibited best adapted to human cellular system, which correlate with its highest epidemic intensity as compared with the other seasonal influenza viruses. CpG dinucleotide was found to be strongly avoided among the seasonal influenza viruses with more restraint among influenza B viruses than influenza A viruses, and might be accounted to the strategy of the viral pathogens in evading human immune signals. Dynamic scenes of ongoing evolution in codon usage and elimination of CpG motif among the viruses, which correlate with their distinct host adaption state, signifying the marked impact of selective force operational on the viral genomes, aimed at proficient circulation, enhanced fitness and successful infective manifestations in humans.
    URI
    repository.auw.edu.bd:8080//handle/123456789/776
    Collections
    • 2021 [5]

    DSpace software copyright © 2002-2022  LYRASIS
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of AUW Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2022  LYRASIS
    Contact Us | Send Feedback
    Theme by 
    Atmire NV